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Abstract

We introduce a general and scalable test-time inference
framework for text diffusion models that performs struc-
tured search over decoding policies independently for
each input prompt rather than decoding output sequences
with a fixed strategy. Our approach embeds Group-
Relative Policy Optimization (GRPO) within Monte Carlo
Tree Search (MCTS), where each node represents a partial
decoding strategy parameterized by fixed-length sched-
ules over temperature, remasking strategy, and compute
allocation. For each prompt, GRPO-MCTS constructs
a search tree: before expanding a node, it conducts ex-
ploratory rollouts using multiple sampled children and ap-
plies GRPO to refine the node’s sampling logits. These
updates occur across sibling children (same tree depth)
and are tailored to the specific prompt, enabling stable
advantage estimation under reward sparsity. Final chil-
dren are sampled from the optimized logits, allowing the
tree to grow in directions aligned with high-reward decod-
ing behaviors. This forms a two-level structure: MCTS
searches vertically over inference schedules, while GRPO
optimizes locally across policies. Scaling is controlled by
the breadth of tree search and the precision of GRPO up-
dates. We frame this as structured metacognition, learning
how to think, and demonstrate its effectiveness on the FO-
LIO logical entailment benchmark.

1 Introduction

Language model decoding is traditionally governed by
static, globally fixed strategies such as greedy decoding,
temperature sampling, or nucleus sampling. These meth-
ods overlook a central fact: generation quality depends

not only on what a model decodes, but how it decodes.
We argue that decoding should be adaptive, introspective,
and structurally optimized, even at test time, and that text
diffusion models give us the fine-grained control we need
to do so.

We introduce GRPO-MCTS, a decoding-time algo-
rithm for text diffusion models that performs structured
search over decoding policies independently for each in-
put prompt. GRPO-MCTS uses Monte Carlo Tree Search
(MCTS) [1] to explore the space of decoding strategies,
where each node encodes a partial policy defined by tem-
perature schedules, remasking heuristics, block lengths,
and compute allocations. A full rollout defines a complete
decoding strategy that guides text generation for that spe-
cific prompt.

To optimize these strategies, we embed a two-level
variant of Group-Relative Policy Optimization (GRPO)
[4] at every node. Before sampling children, each node
does random rollouts and applies GRPO updates using
evaluations on the current prompt. This allows refining of
internal logits, pre-emptively informing structural search
decisions. GRPO is conducted (1) across sibling children
at the same tree depth, and (2) within the scope of a sin-
gle prompt, stabilizing advantage estimation and enabling
policy learning even under sparse or noisy rewards. As a
result, GRPO-MCTS adaptively co-evolves its search and
policy in real time, learning not just what to say, but how
to think, one prompt at a time.

2 Decoding Policies as Structured
Programs

Let x be a prompt and y = (y1, . . . , yT ) a generated se-
quence. We define a decoding policy πs that governs the
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model’s inference behavior through a structured schedule
s = {(ti, ri, bi, ei)}Ni=1, where N is the (fixed) number
of decoding blocks held constant across all policies for a
given experiment and:

• ti is the sampling temperature applied in block i,

• ri is the remasking strategy used in block i (e.g., low-
confidence, random),

• bi is the number of base generation steps assigned to
block i,

• ei is the proportion of residual steps (adaptive com-
pute) allocated to block i.

This schedule specifies not only local sampling be-
havior, but also a global strategy for allocating compute
across the generation process. Each decoding policy can
thus be interpreted as a structured program: it dynami-
cally controls how the model allocates attention, uncer-
tainty, and effort during generation.

Sampling from πs generates an output y ∼ πs(· | x),
which is evaluated by a reward function R(y). Our ob-
jective is to identify high-performing schedules for each
prompt:

s∗ = argmax
s

Ey∼πs [R(y)]. (1)

In our framework, this search is implemented via
Monte Carlo Tree Search (MCTS), where each node rep-
resents a prefix of s, and full rollouts define complete de-
coding policies. These are iteratively refined using Group-
Relative Policy Optimization (GRPO), enabling adaptive
inference at test time.

3 MCTS over Partial Decoding Poli-
cies

We construct a tree T in which each node nd at depth
d represents a partial decoding policy s≤d, a prefix of a
structured schedule. Each schedule element at depth d is
a tuple (td, rd, bd, ed) corresponding to temperature, re-
masking strategy, base steps, and extra step proportion. A
complete decoding policy s is produced by rolling out a
path from the root to a leaf of the tree. The tree has a
maximum depth of N , corresponding to the fixed number
of blocks in each decoding policy. Each full rollout thus
represents a complete blockwise schedule of length N .

MCTS in this context explores structural allocation
policies: how to segment the generation process into
blocks, how to distribute base and residual compute across

those blocks, and which local sampling heuristics to ap-
ply. These decisions represent architectural control over
the inference process, not just token-level behavior.

Before expanding a node, GRPO-MCTS performs a
Phase 1 update: R exploratory child policies are sampled
from the node’s current temperature and remasking logits.
These are randomly rolled out into full decoding policies,
and their outputs are evaluated via a task-specific reward
function R(y). The reward signals are used in a two-level
Group-Relative Policy Optimization (GRPO) procedure:

• Level 1 (horizontal): GRPO is applied across sibling
children at the same depth, optimizing logits based
on relative performance.

• Level 2 (prompt-wise): Since the algorithm is applied
per prompt, GRPO is applied independently for each
prompt, allowing for adjustment to prompt-specific
difficulty.

After GRPO updates the node’s logits, k final children
are sampled from the improved distribution and added to
the tree, and rewards are normalized and propagated up
the tree based on those final children. This coupling of
search and local learning ensures that structural expan-
sions reflect reward-aligned behaviors.

Over successive iterations, MCTS grows the tree along
promising directions, while GRPO sharpens the sampling
behavior within each node. This co-evolution enables the
model to discover and execute high-performing inference
procedures tailored to individual prompts.

4 Two-Level GRPO for Fair and
Structured Credit Assignment

To refine decoding behavior during tree expansion, we ap-
ply Group-Relative Policy Optimization (GRPO) across a
group of random, exploratory rollouts. Let x be the cur-
rent prompt and Gd = {s1, . . . , sk} the group of sampled
child policies at a node of depth d.

Each policy sj ∈ Gd is rolled out to produce an output
yj ∼ πsj (· | x), which is evaluated by a scalar reward
Rj = R(yj). We then apply GRPO to compute a gradient
objective for prompt x:

LGRPO = −
k∑

j=1

(
Rj − R̄Gd

)
logP (sj), (2)

where R̄Gd
= 1

k

∑k
j=1 Rj is the average reward across the

group for prompt x, and P (sj) is the sampling probability
of policy sj under the node’s current logits.
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After computing advantages, we aggregate the advan-
tages for each policy and normalize them via z-score over
the group Gd, producing group-normalized advantages:

Aj =
1

N

N∑
i=1

(
Rj − R̄Gd

)
(3)

Ā =
1

k

k∑
j=1

Aj (4)

σ2
A =

1

k

k∑
j=1

(Aj − Ā)2 (5)

Âj =
Aj − Ā

σA + ϵ
(6)

These advantages Âj are then used to compute policy
gradients and update the temperature and remasking logits
via backpropagation.

This two-level formulation ensures:

• Prompt-specific optimization: The optimization ob-
jective is tailored to the given prompt.

• Structure-level relativity: Credit assignment is local
to each node’s group of children, ensuring refinement
focuses on intra-structural distinctions.

5 Algorithm Overview
We summarize the GRPO-MCTS inference-time proce-
dure in Algorithm 1. The core idea is to search not just
over output sequences but over decoding strategies them-
selves. Each node in the MCTS tree represents a partial
decoding policy, specifically, a prefix of block-level pa-
rameters including temperature, remasking strategy, step
allocation, and extra compute proportion. As the tree
grows, full decoding policies are constructed by rolling
out paths from the root to leaves.

To expand a node, GRPO-MCTS samples multiple ex-
ploratory children, rolls them out, and evaluates their out-
puts using a prompt-specific reward function. Group-
Relative Policy Optimization (GRPO) is then applied
to refine the node’s sampling logits based on prompt-
normalized, z-score-adjusted advantages. After this up-
date, a fixed number of high-reward children are sampled
and added to the tree. These steps are repeated recursively,
enabling the tree to grow in directions aligned with effec-
tive inference behavior. GRPO-MCTS operates indepen-
dently for each prompt and requires no modification of the
underlying language model, making it a general-purpose
method for decoding-time optimization.

Algorithm 1 GRPO-MCTS for Decoding Policy Opti-
mization (per prompt)

1: procedure GRPO MCTS(M , T , x, ℓ, S, I , R, b, k)
2: Initialize root node r with empty
DecodingPolicyState

3: Initialize optimizer O over logits in subtree of r
4: K ← IDs of all logits tracked by O
5: for i = 1 to I do
6: n← r
7: while n is fully expanded and not terminal do
8: n← BestChild(n)
9: end while

10: if n is not terminal then
11: Phase 1: GRPO Pretraining Step
12: G ← R exploratory children sampled

from logits at n
13: for all sj ∈ G do
14: πj ← RolloutPolicy(sj , S)
15: yj ←M(x, πj)
16: rj ← R(yj , ℓ)
17: end for
18: Compute z-scored advantages Âj across

group G
19: Apply GRPO update: ∇θLGRPO =
−
∑

j Âj∇θ logP (sj)
20: Update logits at node n using O
21: Phase 2: Final Sampling and Value

Propagation
22: C ← b children sampled from updated

logits at n
23: for all c ∈ C do
24: πc ← RolloutPolicy(c, S)
25: yc ←M(x, πc)
26: rc ← R(yc, ℓ)
27: end for
28: Compute z-scored advantages Âc across C
29: for all c ∈ C do
30: Propagate Âc upward from c to root r
31: end for
32: Add any new logits in C to O if not in K
33: end if
34: end for
35: Lleaf ← all leaves in tree rooted at r
36: Sort Lleaf by average value (value sum / visits)
37: return Decoding policies from top-k leaves
38: end procedure
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6 Theoretical Analysis
We analyze convergence properties of two-level Group-
Relative Policy Optimization (GRPO) in the context of
structured decoding policy optimization. Let Pd denote
the set of full decoding policies that share a common pre-
fix of length d, i.e., policies generated from a single par-
ent node at depth d in the MCTS tree. Let x denote the
prompt, and let R(y) be a bounded scalar reward function.

Our goal is to maximize the expected return for the
prompt, defined as:

J(s) = Ey∼πs(·|x)[R(y)]− R̄Pd
, (7)

where R̄Pd
= 1

|Pd|
∑

s′∈Pd
Ey∼πs′ (·|x)[R(y)] is the mean

reward over the sibling group Pd for prompt x.

6.1 Assumptions
We adopt the following standard assumptions to support
convergence:

1. Bounded Rewards: R(y) ∈ [0, Rmax] for all outputs
y.

2. Smooth Policies: The sampling distribution πs

is differentiable and Lipschitz-continuous in the
scheduling parameters of s (e.g., logits over temper-
ature/remasking options).

3. Finite Action Space: The set of possible block pa-
rameters (temperature, remasking, block length, and
extra step proportion) is finite.

4. Persistent Exploration: The UCB-based node se-
lection ensures every policy s ∈ Pd is visited in-
finitely often.

5. Log-Probability Gradients: The sampling log-
probability logP (s) is differentiable and gradients
∇ logP (s) are accessible via softmax logits.

6. Fixed Block Count: Each decoding policy consists
of exactly N blocks, where N is constant for a given
experiment.

6.2 Gradient-Based Convergence
Let P (s) denote the sampling probability of decoding pol-
icy s ∈ Pd from the node’s softmax distribution over child
options. For the prompt x, the GRPO objective is defined
as:

LGRPO = −
∑
s∈Pd

Â(s) logP (s), (8)

where R(s) = R(πs(x)) is the observed reward for
prompt x under policy s.

Taking the gradient with respect to the policy parame-
ters (i.e., logits underlying P (s)), we obtain the standard
log-likelihood trick:

∇LGRPO = −
∑
s∈Pd

Â(s)∇ logP (s). (9)

Sampling-based estimation yields an unbiased stochas-
tic policy gradient:

∇LGRPO = Es∼P (·)
[(
R(s)− R̄Pd

)
∇ logP (s)

]
. (10)

This is all for one prompt, hence two-level GRPO, op-
timizing for same-depth nodes and the same prompt. This
gradient is an unbiased estimator of ∇J(s), and under
Robbins-Monro conditions for stochastic approximation
and the assumptions above, the GRPO update converges
almost surely to a local optimum of the relative expected
return J(s) within each structural group Pd.

6.3 Interpretation
The two-level GRPO design decouples prompt-level nor-
malization from structure-level competition, enabling sta-
ble optimization in sparse or noisy reward settings. By
normalizing rewards across policies per prompt, the al-
gorithm ensures that the policy is optimized specifically
for the given prompt. Simultaneously, by comparing poli-
cies only within structurally consistent sibling groups Pd,
GRPO ensures that the refinement signal is locally aligned
to meaningful architectural choices.

This structure-aware credit assignment enables the
model to learn prompt-specific decoding behaviors with-
out conflating unrelated inference strategies. Provided
that MCTS explores sufficiently, ensuring each policy is
visited infinitely often, two-level GRPO converges to lo-
cal optima that are both prompt-fair and structure-aware,
making it well-suited for test-time reasoning tasks where
generalization must be adapted per-instance.

7 Experimental Setup
We evaluate GRPO-MCTS on logical reasoning tasks
using the FOLIO dataset [2], which consists of multi-
premise entailment questions with sparse supervision and
nuanced semantic structure. We use LLaDA [3] as our
text diffusion model, but any text diffusion model can be
used. Each decoding policy consists of a blockwise sched-
ule over the following discrete action space (with a fixed
number of blocks N):
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• Temperature choices:
ti ∈ {0.0, 0.1, 0.2},

• Remasking strategy choices:
ri ∈ {low-confidence, random},

• Block lengths:
bi ∈ {1, . . . , B}, subject to

∑N
i=1 bi = T ,

• Extra step proportions:
ei ∈ [0, 1], with

∑N
i=1 ei ≤ 1.

Each candidate policy is evaluated on a shared prompt
and reward is computed using an external verifier model.
GRPO is applied at two levels: (1) across sibling policies
at the same tree depth, and (2) normalized per prompt to
ensure fairness and stability. All experiments use the 8B
instruct-tuned variant of LLaDA with float16 inference
and are run per prompt to reflect test-time usage.

Scaling in our framework is governed by three key fac-
tors. First, the branching factor determines how many
children are sampled at each node, shaping the breadth
of exploration as the decoding policy state is incremen-
tally constructed. Second, the number of Phase 1 groups
controls how many independent sets of rollouts are used
to perform the GRPO update. Each group provides a lo-
calized comparison across sibling policies, enabling more
accurate updates to sampling logits such as temperature
and remasking strategy. Third, the number of rollouts per
group affects how well each group’s update is tuned. A
higher count leads to more stable gradient estimates and
more refined policy adjustments. Together, these parame-
ters control the overall trade-off between search breadth,
update quality, and inference cost.

8 Research Prototype Results

We evaluate the effectiveness of GRPO-embedded MCTS
on test-time logical reasoning using prompts from the FO-
LIO dataset. Each prompt contains a set of facts followed
by a question requiring compositional inference. Decod-
ing policies sampled by our framework guide the genera-
tion process, and outputs are evaluated using an LLM-as-
a-Judge for correctness, validity, and coherence. We set
the number of blocks to 4 and the branching factor to 2.
At each node, we do GRPO with 2 groups, 5 rollouts per
group. As described in the previous section, the branching
factor, number of GRPO groups, and rollouts per GRPO
group can be scaled up.

8.1 Prompt and Trajectory Example
The following is an example of a prompt used in our eval-
uation:

The following facts are given: Phoneix’s music is
classified under the indie pop genre.is a band from
France. French bands write songs in French or in
English. Aside from indie pop, pop rock and synth-
pop are two other genres of music. Phoenix has no
songs in French.

Question: Is the conclusion ”Phoneix’s music is
classified under the pop rock genre.” logically en-
tailed by the above facts? Think out loud step by
step and, on a new line, write one of the following
three options by itself as your final answer: False,
Uncertain, or True.

During inference, our framework gets the model to ex-
plore a structured space of decoding policies. Each policy
defines a schedule over temperature, remasking strategy,
block length, and extra step proportions. Below is one
such decoding policy that was discovered by test-time re-
inforcement learning using our GRPO-embedded MCTS
framework for the prompt above:

Decoding Policy (test time policy 0):

• Temperature schedule:
[0.2, 0.2, 0.2, 0.2]

• Remasking strategy schedule:
[random, low confidence,
low confidence, low confidence]

• Block schedule:
[37, 58, 26, 7]

• Extra step proportions:
[0.24, 0.38, 0.04, 0.34]

This policy yielded a successful reasoning trajectory
that logically entailed the correct answer:
Model Output:

Let’s break down the facts: 1. Phoneix’s music is
classified under the indie pop genre. 2. Phoenix is
a band from France. 3. French bands write songs
in French or in English. 4. Aside from indie pop,
pop rock and synth-pop are two other genres of mu-
sic. 5. Phoenix has no songs in French. Given these
facts, the conclusion ”Phoneix’s music is classified
under the pop rock genre” is not logically entailed.
Phoneix’s music is definit as classified under the in-
die pop genre. So, the final answer is:

False
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8.2 Links to Results
We provide the following artifacts from our research pro-
totype to enable replication and inspection of generated
policies and reasoning trajectories:

• Metadata: High-level metadata describing parame-
ters for the GRPO-embedded MCTS algorithm, each
sampled decoding policy, and its associated reward.

– Metadata JSON

• Tree Snapshot: Full serialized tree snapshot con-
taining decoding policies explored by GRPO-MCTS,
including all sampled children, rewards, logits, and
value estimates.

– Tree Snapshot

• Verbose Log: Full prompt-level rollout trace, in-
cluding reasoning outputs and reward assignments
for each policy.

– Output Log

9 Applications and Outlook
• Prompt-specific decoding optimization: GRPO-

MCTS dynamically adapts inference behavior to the
specific reasoning demands of each prompt, rather
than relying on globally fixed decoding strategies.

• Verifier-guided generation: The framework is ag-
nostic to the reward source and can be paired with
external verifiers or task-specific reward models.

• Policy distillation: Top-performing decoding poli-
cies identified by GRPO-MCTS can be distilled into
lightweight student decoders or used to guide future
model pretraining.

• Exploration extensions: Future work may incor-
porate predictive entropy or calibration metrics into
MCTS exploration bonuses, or extend the GRPO
policy space to continuous actions. Multi-prompt op-
timization for similar kinds of prompts may also be
explored.

10 Conclusion
We introduce 2-level GRPO-MCTS, a test-time decoding
optimization framework that jointly performs structured
search and credit assignment over blockwise decoding

policies. By embedding Group-Relative Policy Optimiza-
tion within Monte Carlo Tree Search, the method adapts
inference behavior to each input prompt via competitive
local learning and structural exploration. This enables
adaptive generation and structured metacognition in text
diffusion models. GRPO-MCTS is modular, gradient-free
with respect to the base model, and compatible with any
sampling-based decoder, offering a general-purpose foun-
dation for test-time inference optimization.
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