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Abstract

We propose a theoretical framework for language-native
world modeling, where natural language descriptions of
environments are encoded into structured latent vectors
composed of interpretable components, each correspond-
ing to an aspect of world state (e.g., object position, agent
action, environmental affordance). Instead of predicting
the next token, our system autoregressively forecasts the
evolution of semantic latent states under hypothetical ac-
tion sequences. We extend Shannon’s notion of entropy
minimization beyond text generation and define reason-
ing as compression over semantically meaningful world
trajectories.

The system comprises three key modules: (1) a seman-
tic encoder that maps text to latent world states; (2) a la-
tent dynamics model that predicts how the latent world
evolves over time under specified actions; and (3) a goal
verifier that scores simulated outcomes for goal align-
ment. Each latent state can optionally be projected into a
learned space optimized for simulation and then decoded
back into structured form for interpretation.

Unlike conventional prompting-based approaches, we
separate semantic interpretation, latent prediction, and
evaluation. Simulation is performed entirely in latent
space, not token space, allowing for modular, inter-
pretable, and efficient reasoning. This blueprint recasts
language modeling as predictive compression over latent
semantic configurations and enables agents that autore-
gressively simulate not text but meaningfully structured
futures.

1 Background and Related Work

1.1 Shannon Entropy and Predictive Com-
pression

Claude Shannon’s foundational work on information the-
ory [13] introduced entropy as a measure of uncertainty

and a limit on lossless compression. In modern machine
learning, this underpins next-token prediction, where
models minimize cross-entropy loss to approximate the
source distribution. Transformer-based language models
such as GPT [10, 2] optimize this objective to generate
coherent textual continuations. However, their focus re-
mains on syntactic fluency rather than semantic world un-
derstanding.

1.2 World Models in Reinforcement Learn-
ing

Model-based reinforcement learning (MBRL) explores
the use of internal models that simulate environment dy-
namics for planning. Systems like PlaNet [4], Dreamer
[3], and MuZero [12] learn latent representations of phys-
ical environments and predict transitions under action se-
quences. These world models operate over sensorimotor
inputs, often grounded in visual or proprioceptive data,
and focus on predicting observable outcomes for down-
stream decision-making.

1.3 Language Models as Semantic Simula-
tors

Recent research explores the potential of language mod-
els to simulate abstract processes using natural language
as both input and output. Works on chain-of-thought
prompting [14], tool integration [11l], and generative
agents [9] demonstrate LLMs’ ability to model reason-
ing steps, simulate social interactions, and carry out tasks.
However, these approaches remain constrained to surface-
level token manipulation. They lack a principled notion of
latent world states or trajectory modeling beyond token-
level transitions.

Recent studies have shown that large language mod-
els do acquire internal latent representations that reflect
structured knowledge about the world [7} 18, [6]. These
representations enable surprising downstream behaviors



like implicit spatial reasoning, theory of mind [3], and
causal inference [1]. However, current methods provide
limited access to or control over these latent states, re-
lying primarily on prompt engineering or fine-tuning to
steer model behavior. There is no direct mechanism to
simulate or manipulate world dynamics within these latent
representations in a structured or interpretable manner.

1.4 Our Contribution:
World Modeling

We propose a novel framework that reimagines language
models not as token predictors but as engines of struc-
tured simulation. Motivated by the observation that hu-
mans reasoned before they spoke, that mental simulation
and goal-directed behavior long predated language, we ar-
gue that language should serve as an interface to thought,
not its substrate. Our framework, which we call language-
native world modeling, disentangles language from gen-
eration and centers reasoning on semantic world represen-
tations rather than strings.

Natural language inputs describing environments,
agent behaviors, or goals are encoded into structured la-
tent vectors, where each dimension corresponds to an in-
terpretable semantic variable (e.g., object location, agent
intent, environmental affordance). These vectors repre-
sent compressible snapshots of world state. A dynamics
model then evolves these latent states over time, and a
verifier module evaluates whether the resulting trajectory
satisfies a goal condition, which is also expressed in lan-
guage but embedded in the same semantic space.

Unlike prior approaches that simulate environments
through sensorimotor interaction or produce textual con-
tinuations, our system reasons entirely within a latent se-
mantic space. This unlocks interpretable planning, com-
positional simulation, and world modeling without re-
liance on grounded sensory data or symbolic logic. Cru-
cially, it expands on existing work by offering explicit
control over latent representations: rather than relying on
prompt tuning or indirect steering, our architecture en-
ables agents to simulate, intervene, and verify within the
modeled world itself.

Our key contributions are:

Language-Native

* A modular architecture that separates interpretation,
simulation, and evaluation into a semantic encoder, a
latent dynamics model, and a goal verifier, enabling
structured reasoning without token-level generation.

* A hybrid latent space design that preserves inter-
pretability (via explicit semantic dimensions) while
allowing learned compression for efficient simula-
tion.

* A formalization of reasoning as entropy minimiza-
tion over future latent trajectories, extending Shan-
non entropy from surface-level token sequences to
deep world-state evolution.

* A new paradigm of language-native planning, where
language serves as the interface to a meaning-space
simulator, not the generator of output.

This architecture reframes intelligence as predictive
compression over structured world representations. Just
as humans use language to name, manipulate, and share
mental simulations, our system treats language as a key-
board for interacting with an underlying simulator. It
builds latent representations of the world, evolves them
through hypothetical action, and verifies outcomes not by
producing more language, but by operating directly in
meaning space. In doing so, it bridges information the-
ory, semantic grounding, and model-based reasoning to
bring language models closer to how we think: through
simulation, not syntax.

2 Language-Native World Modeling
Framework

We propose a framework that shifts from next-token pre-
diction to structured world-state prediction, enabling lan-
guage models to simulate and reason about environments
described in natural language. Our system interprets nat-
ural language observations and goals, translates them into
latent representations, and predicts how the world might
evolve under hypothetical actions.

2.1 Problem Setup

The input to our system is a time-indexed sequence of nat-
ural language observations and optional actions, describ-
ing how an environment has evolved over time. At each
timestep ¢, we assume access to:

* A natural language description of the current envi-
ronment F

* (Optionally) past actions a;— g .t—1

* A desired goal state GG, also described in language

We encode these into structured latent representations:

2 = fenc(Et), 9= fenc(G)

Here, z; represents the structured latent world state at
time ¢, and g encodes the goal configuration. Crucially,
the system does not treat E; in isolation. Rather, it models
the environment’s evolution as a sequence of latent states



zt— k¢ generated from a sequence of textual observations
E t—K:t-

Actions a; are defined as vectors that specify intended
modifications to the world (e.g., “pick up the cup”). How-
ever, not all latent dimensions are mutable. We define an
affordance function:

a; € ¢(2)

which returns the set of valid action vectors conditioned
on the current world state z;. This enforces semantic plau-
sibility by filtering out illogical or impossible changes. It
might not be necessary for a well-trained latent dynamics
model, but it provides a valuable inductive bias that con-
strains the action space, improves sample efficiency dur-
ing planning, and enhances interpretability by explicitly
modeling which transitions are feasible given the current
semantic configuration.

To simulate how the world evolves, we apply a history-
aware latent dynamics model:

Zi41 = faypn(Ze—Kit, Gt—K:t)

The latent dynamics model operates autoregressively:
at each step, it uses the previously predicted latent state
z¢+; (rather than ground-truth latents) to generate the next
Zt+i+1- This enables open-loop simulation over arbitrary
horizons and avoids exposure bias that would arise from
teacher-forced rollouts. Unlike traditional world models
that assume Markovian dynamics, our model conditions
on a sliding window of past latent states and actions, i.e.,
Zipi— Kitti, Qti—K:t+i» 10 model the next state. This
design captures long-range temporal dependencies such
as narrative structure, memory, and causal chaining in
language. While autoregressive in structure, the model
functions over structured latent space rather than token
sequences, enabling recursive generation of coherent se-
mantic trajectories that reflect evolving world dynamics.

The system rolls forward through time, generating a
trajectory of future latent states:

{2141, 20425+ s 20w }

To evaluate the outcome, a verifier V' (2411, g) scores
how well the final predicted state aligns with the goal.
Planning involves selecting the action sequence that max-
imizes this alignment:

a* = arg max V(zerH,9)

Qt:t+H

Example. History: t—2: “The robot enters the kitchen.”
t—1: “It scans the counter for objects.” ¢: “A cup lies on
the floor.”

Goal: “The cup is placed back on the counter.”

Each sentence is encoded into a structured latent, form-
ing the input sequence z;_o.;. An action like “pick up the
cup” is sampled within ¢(z;), and the model simulates fu-
ture states 2z;41..+m, selecting actions that bring the final
state closer to g.

2.2 System Architecture

Our framework operates over sequences of latent world
states derived from sequences of language. It consists of
three key modules:

1. Semantic Encoder. A large language model encodes
each time-indexed environment description E; and
goal G into structured latent vectors. Each dimen-
sion in z; corresponds to a semantically meaning-
ful world variable (e.g., agent location, object status,
available actions), preserving temporal consistency
and interpretability.

2. Latent Dynamics Model. A predictive model sim-
ulates how the environment evolves, using a window
of past latent states and actions to forecast the next
latent state:

Zip1 = faypn(Ze—Kit> Gr—K:t)

The latent dynamics model operates autoregres-
sively: at each step, it uses the previously predicted
latent state z;4; (rather than ground-truth latents)
to generate the next z;4;41. This enables open-
loop simulation over arbitrary horizons and avoids
exposure bias that would arise from teacher-forced
rollouts. Unlike traditional world models that as-
sume Markovian dynamics, our model conditions on
a sliding window of past latent states and actions,
1.8., Zt4i— K:t+i, Gt+i— K :t+i, t0 model the next state.
This design captures long-range temporal dependen-
cies such as narrative structure, memory, and causal
chaining in language. While autoregressive in struc-
ture, the model functions over structured latent space
rather than token sequences, enabling recursive gen-
eration of coherent semantic trajectories that reflect
evolving world dynamics.

3. Verifier. A downstream model scores alignment be-
tween the final predicted world state and the goal rep-
resentation, enabling trajectory evaluation and action
planning.

This design treats the entire modeling task as a
sequence-to-sequence prediction problem in latent seman-
tic space, rather than in token space.



2.3 Hybrid Latent Representations: From
Structure to Optimization

To balance semantic interpretability with simulation ef-
ficiency, we introduce a two-stage encoding pipeline: a
structured semantic latent is first projected into a compact,
optimized space, and then discretized via a learned vocab-
ulary of symbolic latent tokens.

Formally, let {z;_k,...,2:} be a time-indexed se-
quence of structured latent vectors derived from natural
language. Each z; is projected into an intermediate con-
tinuous space via:

Zgom = fproj(zt)

To enable discrete reasoning and efficient planning, we
define a finite vocabulary Z = {e;,es,...,ex} C R? of
learnable latent codes, or codebook entries, where each e;
represents a symbolic configuration of the world.

We then assign each projected latent to its nearest sym-
bolic token in the codebook:

cont

M) = arg mi% |E
e; €

2z; = nearest_code(z} —e?
The latent dynamics model operates over sequences of
these discrete, symbolic latents:

Zei1 = Jayn(Zi—gots G- Kit)
To support human-level interpretability, supervision,
and debugging, we define a structured decoder that maps
symbolic latents back into interpretable structured form:

Zy = fstrucl—dec(zé)

This round-trip mechanism, structured latent to opti-
mized vector to symbolic token and back, preserves the
semantic content of natural language while supporting ef-
ficient latent simulation and discrete entropy computation.
By leveraging a learned latent vocabulary, we enable the
use of token-like semantics within continuous neural sys-
tems, unifying the strengths of symbolic reasoning with
differentiable modeling.

3 Information-Theoretic Founda-

tions

Our framework is grounded in the principle that intelligent
behavior emerges from the ability to compress and pre-
dict structured sequences of world representations. Draw-
ing from Shannon’s insight that entropy bounds the min-
imal number of bits required to describe a signal, we ex-
tend this concept from sequences of linguistic tokens to

trajectories of latent semantic states, each encoding inter-
pretable aspects of an evolving environment.

3.1 From Token Entropy to Latent Trajec-
tory Entropy

Traditional language models quantify uncertainty over the
next token x;,1 given a sequence history z;.; using con-
ditional entropy:

H(Xi1q | 214) = — Z P(x | x1.¢)log P(x | 21.4)
€Y

Here, V is the vocabulary of possible tokens. This for-
mulation captures uncertainty in syntactic continuation,
but remains agnostic to the underlying semantic or causal
structure that may drive the evolution of the described en-
vironment.

3.2 Latent Representation of Sequential
Context

We instead operate over structured semantic states derived
from sequences of natural language descriptions. Let:

* hi_g.+: asequence of historical language inputs de-
scribing the environment and agent behavior over the
last K steps,

* 2t—kt = fenc(ht—Kt): acorresponding sequence of
structured latent vectors summarizing the semantic
world state at each timestep.

Each latent vector z; € z;_x.; encodes interpretable
semantic variables such as object properties, agent posi-
tions, and affordance structure. The evolution of the world
is modeled as a transition through this latent space:

241 = fdyn(zth:ta ath:t)

3.3 Entropy over Latent Trajectories

To generalize the notion of entropy to structured world
modeling, we define the uncertainty over the next latent
state z;41, or more generally, over a full future trajectory
{2t+1,- -, 2t+m } conditioned on the observed history:

H(Zt+1 \ Zt—K:taat—K:t)
== Z P(zt41 = 2 | 21—ty G- Kc:t)
z2EZ

log P(2441 = 2 | ze— kit Qt— Kot



Here, Z denotes the space of valid structured latent
world states. This formulation captures the semantic un-
certainty over how the world may evolve given past con-
text and agent actions.

This entropy formulation implicitly assumes an au-
toregressive rollout procedure, where each predicted
state z;y,+1 depends on previously generated latents
Zt+i—K:++; and actions. This open-loop structure reflects
the model’s belief distribution over future semantic trajec-
tories, rather than sampling from ground-truth sequences.
As such, entropy over latent trajectories captures uncer-
tainty not just in state transitions, but in the model’s ca-
pacity to simulate plausible futures recursively.

3.4 Reasoning as Predictive Compression

Under this framework, reasoning is reframed as the pro-
cess of minimizing semantic entropy across time: learning
a dynamics model that compresses and predicts structured
trajectories of latent world states. The lower the entropy
over future states, the more structured and coherent the
agent’s internal model of the world is.

The latent dynamics model fqy, thus serves as a com-
pression engine: it transforms a sequence of past states
and actions into a predictive representation of what comes
next. Successful modeling across a planning horizon im-
plies the system has internalized causal, temporally ex-
tended patterns, allowing it to simulate hypothetical fu-
tures and evaluate their alignment with goals.

In contrast to token-level prediction, our formulation
operates on interpretable, semantically grounded rep-
resentations. This aligns reasoning with information-
theoretic principles: intelligent behavior emerges from
minimizing uncertainty over structured world-state trajec-
tories, not over strings.

4 Planning in Latent Space

Our framework enables goal-directed reasoning by sim-
ulating the evolution of semantic world states entirely
within a structured latent space. Unlike traditional lan-
guage models that operate in token space, we treat la-
tent representations derived from sequences of language
inputs as the substrate for prediction, planning, and eval-
vation. This design allows efficient and interpretable sim-
ulation without decoding intermediate states into natural
language.

4.1 Structured Latent Trajectory Modeling

Given a history of natural language environment descrip-
tions h;_ .+, we encode them into a sequence of struc-
tured latent states:

Zt—K:it = fenc(hth:t)a g= fenc(G)

Here, g encodes the desired goal state. Starting from
this sequence z;_ k¢, and given a corresponding history of
past actions a;_ ¢, the latent dynamics model simulates
the next world state:

Zt41 = fdyn(zth:t; ath:t)
By unrolling this transition iteratively over a planning
horizon H, we generate a full trajectory of predicted fu-
ture world states:

{2t41, 242, - s 2eqH )

Each predicted latent state reflects a semantically co-
herent configuration of the world, grounded in the tempo-
ral logic and affordances of prior states. Simulation oc-
curs entirely in latent space, avoiding the inefficiencies of
autoregressive language generation while preserving in-
terpretability through structured representations.

Decoding via fg is optional and used for explana-
tion, debugging, or alignment with human supervision.
The core planning mechanism operates entirely on com-
pressed, structured trajectories.

4.2 Goal Evaluation and Trajectory Selec-
tion

To determine whether a simulated trajectory leads to-
ward the intended goal G, we evaluate the final predicted
state z;4 g against the goal representation g using a veri-
fier function V' (24417, ¢). This function can take various
forms:

* A learned model trained to regress task completion
scores

* A similarity metric (e.g., cosine similarity) between
zt+m and g

¢ A contrastive model that distinguishes goal-aligned
outcomes from distractors

The planning objective becomes a trajectory optimiza-
tion problem:

a* = arg max V(zirm,9)
Qt:t+H

where a™ is the sequence of actions that leads to the pre-
dicted state most consistent with the goal. This evaluation



guides action selection within the latent space simulation
loop.

4.3 Planning Loop

Our structured planning system proceeds as follows:

1. Encode the recent history h;_f.; into a latent se-
quence ¢t

2. Generate or sample candidate action sequences
¢+ constrained by ¢(z¢)

3. Roll out future latent states using the autoregres-
sive dynamics model fgyq, where each predicted state
z+; 1s generated based on previously predicted la-
tents z;4;— i 1+; and actions

4. Score the predicted final state z;4 iy using the verifier
V(2t+m,9)

5. Select the best-scoring trajectory for execution, fur-
ther rollout, or decoding

Because the latent dynamics model operates over a
symbolic vocabulary of learned tokens, planning pro-
ceeds over discrete trajectories in latent space, enabling
entropy-based evaluation and efficient candidate enumer-
ation. This architecture enables efficient, interpretable
planning that is fully grounded in natural language in-
put yet decoupled from token-level generation. It elim-
inates the need for symbolic logic engines or grounded
physics simulators by leveraging the structured seman-
tics of language-derived latent space. By treating world
modeling as sequence-to-sequence prediction in meaning
space, our approach supports long-horizon, goal-directed
reasoning under uncertainty.

5 Discussion

This paper proposes a theoretical blueprint for language-
native world modeling, an architectural paradigm in
which reasoning, planning, and simulation are carried out
not over sequences of tokens, but over sequences of struc-
tured latent states derived from natural language. We re-
frame language models not as string generators but as pre-
dictive compressors operating over evolving trajectories
of semantic meaning.

We intentionally do not present empirical results. As an
independent researcher, the resources necessary to imple-
ment, train, and evaluate this framework are beyond the
current scope. However, this work is designed to serve as
a conceptual foundation, akin to early proposals in model-
based reinforcement learning and probabilistic program-
ming, that invites empirical exploration from the research
community.

Several key design principles emerge from this frame-
work:

* Modular Latent Reasoning. Our system decom-
poses the reasoning process into interpretable mod-
ules: a semantic encoder that processes sequences
of language into structured latents, a latent dynam-
ics model that simulates transitions across time, and
a verifier that evaluates alignment with goals. This
structure supports transparent, compositional reason-
ing distinct from monolithic prompting.

 Structured-to-Optimized Latents. Semantic latent
states retain interpretable variables grounded in lan-
guage. These can be projected into optimized la-
tent embeddings for efficient simulation and then de-
coded back into structured form, enabling both flex-
ibility and traceability.

* Reasoning as Predictive Compression. Intelli-
gence is operationalized as entropy minimization
over future latent trajectories. Rather than gener-
ating probable token sequences, the model reduces
uncertainty over how the world evolves, selecting
action sequences that yield semantically coherent,
goal-directed futures.

While each component, semantic encoding via LLMs,
sequence modeling via learned dynamics, and vector-
space goal evaluation, builds on established techniques,
their integration into a unified, language-grounded trajec-
tory simulator is novel. Crucially, our framework aligns
with both the strengths of language models and the struc-
ture of sequential decision-making, offering a pathway to-
ward interpretable agents capable of simulating semanti-
cally rich environments.

Future empirical work could investigate several ques-
tions: Can structured-to-learned latent projections im-
prove generalization across tasks? Does entropy over la-
tent state trajectories correlate with cognitive complexity
or planning difficulty? Do latent-space rollouts outper-
form token-space decoders in robustness and alignment?

Although our framework diverges from traditional au-
toregressive decoding in token space, it retains an autore-
gressive structure in latent space: the dynamics model re-
cursively generates each future state from previously pre-
dicted latents and actions. This preserves temporal conti-
nuity and supports open-ended semantic simulation across
planning horizons.

This paper is ultimately a provocation and an invita-
tion: to reimagine language models not merely as pre-
dictors of strings, but as engines of structured simulation.
To model not what is said, but what is meant. To build
agents that act in latent worlds and reason over semantic



sequences, compressing the unfolding of experience not
word by word, but thought by thought.
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